back sound

pluginspage="http://www.macromedia.com/go/getflashplayer" quality="high" width="1" src="http://www.swfcabin.com/swf-files/1257488371.swf" height="1" type="application/x-shockwave-flash

back sound

back sound

http://www.swfcabin.com/swf-files/1252840473.swf

bersama

http://www.swfcabin.com/swf-files/1257488371.swf

Selasa, 11 Februari 2014

KOMPLEKSOMETRI



KIMIA ANALISIS
PENENTUAN TOTAL KESADAHAN AIR LAUT DENGAN KOMPLEKSOMTRI

I. TUJUAN
a. Menstandarisasi larutan EDTAdengan larutan CaCl2 secara kompleksometri menggunakan indikator EBT
b. Menentukan total kesadahan air laut

II. TINJAUAN PUSTAKA

  Titrasi kompleksometri yaitu titrasi berdasarkan pembentukan persenyawaan kompleks (ion kompleks atau garam yang sukar mengion), Kompleksometri merupakan jenis titrasi dimana titran dan titrat saling mengkompleks, membentuk hasil berupa kompleks. Reaksi–reaksi pembentukan kompleks atau yang menyangkut kompleks banyak sekali dan penerapannya juga banyak, tidak hanya dalam titrasi.
Karena itu perlu pengertian yang cukup luas tentang kompleks, sekalipun disini pertama-tama akan diterapkan pada titrasi. Contoh reaksi titrasi kompleksometri :
                   Ag+ + 2 CN- Ag(CN)2
Hg2+ + 2Cl- HgCl2
(Khopkar, 2002).
Salah satu tipe reaksi kimia yang berlaku sebagai dasar penentuan titrimetrik melibatkan pembentukan (formasi) kompleks atau ion kompleks yang larut namun sedikit terdisosiasi. Kompleks yang dimaksud di sini adalah kompleks yang dibentuk melalui reaksi ion logam, sebuah kation, dengan sebuah anion atau molekul netral (Basset, 1994).
Titrasi kompleksometri juga dikenal sebagai reaksi yang meliputi reaksi pembentukan ion-ion kompleks ataupun pembentukan molekul netral yang terdisosiasi dalam larutan. Persyaratan mendasar terbentuknya kompleks demikian adalah tingkat kelarutan tinggi. Selain titrasi komplek biasa seperti di atas, dikenal pula kompleksometri yang dikenal sebagai titrasi kelatometri, seperti yang menyangkut penggunaan EDTA. Gugus-yang terikat pada ion pusat, disebut ligan, dan dalam larutan air, reaksi dapat dinyatakan oleh persamaan :
M(H2O)n + L = M(H2O)(n-1) L + H2O
(Khopkar, 2002).
Asam etilen diamin tetra asetat atau yang lebih dikenal dengan EDTA, merupakan salah satu jenis asam amina polikarboksilat. EDTA sebenarnya adalah ligan seksidentat yang dapat berkoordinasi dengan suatu ion logam lewat kedua nitrogen dan keempat gugus karboksil-nya atau disebut ligan multidentat yang mengandung lebih dari dua atom koordinasi per molekul, misalnya asam 1,2-diaminoetanatetraasetat (asametilenadiamina tetraasetat, EDTA) yang mempunyai dua atom nitrogen – penyumbang dan empat atom oksigen penyumbang dalam molekul (Rival, 1995).
Suatu EDTA dapat membentuk senyawa kompleks yang mantap dengan sejumlah besar ion logam sehingga EDTA merupakan ligan yang tidak selektif. Dalam larutan yang agak asam, dapat terjadi protonasi parsial EDTA tanpa pematahan sempurna kompleks logam, yang menghasilkan spesies seperti CuHY-. Ternyata bila beberapa ion logam yang ada dalam larutan tersebut maka titrasi dengan EDTA akan menunjukkan jumlah semua ion logam yang ada dalam larutan tersebut (Harjadi, 1993).
Selektivitas kompleks dapat diatur dengan pengendalian pH, misal Mg, Ca, Cr, dan Ba dapat dititrasi pada pH = 11 EDTA. Sebagian besar titrasi kompleksometri mempergunakan indikator yang juga bertindak sebagai pengompleks dan tentu saja kompleks logamnya mempunyai warna yang berbeda dengan pengompleksnya sendiri. Indikator demikian disebut indikator metalokromat. Indikator jenis ini contohnya adalah Eriochrome black T; pyrocatechol violet; xylenol orange; calmagit; 1-(2-piridil-azonaftol), PAN, zincon, asam salisilat, metafalein dan calcein blue (Khopkar, 2002).
Satu-satunya ligan yang lazim dipakai pada masa lalu dalam pemeriksaan kimia adala ion sianida, CN-, karena sifatnya yang dapat membentuk kompleks yang mantap dengan ion perak dan ion nikel. Dengan ion perak, ion sianida membentuk senyawa kompleks perak-sianida, sedagkan dengan ion nilkel membentuk nikel-sianida. Kendala yang membatasi pemakaian-pemakaian ion sianoida dalam titrimetri adalah bahwa ion ini membentuk kompleks secara bertahap dengan ion logam lantaran ion ini merupakan ligan bergigi satu (Rival, 1995).
Titrasi dapat ditentukan dengan adanya penambahan indikator yang berguna sebagai tanda tercapai titik akhir titrasi. Ada lima syarat suatu indikator ion logam dapat digunakan pada pendeteksian visual dari titik-titik akhir yaitu reaksi warna harus sedemikian sehingga sebelum titik akhir, bila hampir semua ion logam telah berkompleks dengan EDTA, larutan akan berwarna kuat. Kedua, reaksi warna itu haruslah spesifik (khusus), atau sedikitnya selektif. Ketiga, kompleks-indikator logam itu harus memiliki kestabilan yang cukup, kalau tidak, karena disosiasi, tak akan diperoleh perubahan warna yang tajam. Namun, kompleks-indikator logam itu harus kurang stabil dibanding kompleks logam-EDTA untuk menjamin agar pada titik akhir, EDTA memindahkan ion-ion logam dari kompleks-indikator logam ke kompleks logam-EDTA harus tajam dan cepat. Kelima, kontras warna antara indikator bebas dan kompleks-indikator logam harus sedemikian sehingga mudah diamati. Indikator harus sangat peka terhadap ion logam (yaitu, terhadap pM) sehingga perubahan warna terjadi sedikit mungkin dengan titik ekuivalen. Terakhir, penentuan Ca dan Mg dapat dilakukan dengan titrasi EDTA, pH untuk titrasi adalah 10 dengan indikator eriochrome black T. Pada pH tinggi, 12, Mg(OH)2 akan mengendap, sehingga EDTA dapat dikonsumsi hanya oleh Ca2+ dengan indikator murexide (Basset, 1994).
Kesulitan yang timbul dari kompleks yang lebih rendah dapat dihindari dengan penggunaan bahan pengkelat sebagai titran. Bahan pengkelat yang mengandung baik oksigen maupun nitrogen secara umum efektif dalam membentuk kompleks-kompleks yang stabil dengan berbagai macam logam. Keunggulan EDTA adalah mudah larut dalam air, dapat diperoleh dalam keadaan murni, sehingga EDTA banyak dipakai dalam melakukan percobaan kompleksometri. Namun, karena adanya sejumlah tidak tertentu air, sebaiknya EDTA distandarisasikan dahulu misalnya dengan menggunakan larutan kadmium (Harjadi, 1993).

Air Sadah:
Air yang mengandung ion Ca2+ dan atau ion Mg2+.
Kesadahan air adalah kandungan mineral-mineral tertentu di dalam air, umumnya ion kalsium (Ca) dan magnesium (Mg) dalam bentuk garam karbonat. Air sadah atau air keras adalah air yang memiliki kadar mineral yang tinggi, sedangkan air lunak adalah air dengan kadar mineral yang rendah. Selain ion kalsium dan magnesium, penyebab kesadahan juga bisa merupakan ion logam lain maupun garam-garam bikarbonat dan sulfat. Metode paling sederhana untuk menentukan kesadahan air adalah dengan sabun. Dalam air lunak, sabun akan menghasilkan busa yang banyak. Pada air sadah, sabun tidak akan menghasilkan busa atau menghasilkan sedikit sekali busa. Cara yang lebih kompleks adalah melalui titrasi. Kesadahan air total dinyatakan dalam satuan ppm berat per volume (w/v) dari CaCO3.
Air sadah tidak begitu berbahaya untuk diminum, namun dapat menyebabkan beberapa masalah. Air sadah dapat menyebabkan pengendapan mineral, yang menyumbat saluran pipa dan keran. Air sadah juga menyebabkan pemborosan sabun di rumah tangga, dan air sadah yang bercampur sabun dapat membentuk gumpalan scum yang sukar dihilangkan. Dalam industri, kesadahan air yang digunakan diawasi dengan ketat untuk mencegah kerugian. Untuk menghilangkan kesadahan biasanya digunakan berbagai zat kimia, ataupun dengan menggunakan resin penukar ion. Air sadah digolongkan menjadi 2 jenis berdasarkan jenis anion yang iikat oleh kation (Ca2+, Mg2+). Yaitu:
a. Air sadah sementara
Mengandung garam hidrokarbonat seperti Ca(HCO3)2 dan atau Mg(HCO3)2.
1. Air sadah sementara dapat dihilangkan kesadahannya dengan cara memanaskan air tersebut sehingga garam karbonatnya mengendap, reaksinya:
Ca(HCO3)2 (aq) CaCO3 (s) + H2O (l) + CO2 (g)
Mg (HCO3)2 (aq) MgCO3 (s) + H2O (l) + CO2 (g)
2. Selain dengan memanaskan air, sadah sementara juga dapat dihilangkan kesadahannya dengan mereaksikan larutan yang mengandung Ca(HCO3)2 atau Mg (HCO3)2 dengan kapur (Ca(OH)2):
Ca(HCO3)2 (aq) + Ca(OH)2 (aq) –> 2CaCO3 (s) + 2H2O (l)

b. Air sadah tetap
Mengandung garam sulfat (CaSO4 atau MgSO4) terkadang juga mengandung garam klorida (CaCl2 atau MgCl2). Air sadah tetap dapat dihilangkan kesadahannya menggunakan cara:
1.               Mereaksikan dengan soda Na2CO3 dan kapur Ca(OH)2, supaya terbentuk endapan garam karbonat dan atau hidroksida:
CaSO4 (aq) + Na2CO3 (aq) –> CaCO3 (s) +Na2SO4 (aq)
2.               Proses Zeolit Dengan natrium zeolit (suatu silikat) maka kedudukan akan digantikan ion kalsium dan ion magnesium atau kalsium zeolit.


III.  Alat dan Bahan:
A.1 Alat
1.      Sebuah Gelas Piala berukuran 250 ml
2.      Tiga buah erlenmeyer berukuran 125 ml
3.      Sebuah pipet gondok berukuran 20 ml
4.       Sebuah pipet gondok berukuran 1 ml
5.      Sebuah corong
6.      Sebuah buret berukuran 50 ml
7.      Sebuah pipet pump berukuran 25 ml
8.      Dua buah pipet tetes

A.2 Bahan
      1.    Larutan Na2H2Y.2H2O atau larutan Na2EDTA
      2.    Larutan standar Ca2+ 0.0005 M
3.    Larutan buffer pH 10,0
4.    Sampel air (Akuades)
5.     Indikator EBT


      IV. Cara Kerja :
  • Siapkan larutan standar CaCl2 0,1M dengan cara melarutkan 0,25 gram CaCO3 dengan 25 mL aquades di dalam beaker glass 250 mL, tambahkan 1 mL HCl pekat melalui dinding gelas piala dan tutup dengan kaca arloji, maka kaca arloji dicuci dengan aquades, cucian masukkan kedalam beaker glass, kemudian tuangkan secara kuantitatif kedalam labu ukur 250 mL dan encerkan dengan aquades sampai tanda batas.
  • Siapkan larutan EDTA 0,01 dengan cara melarutkan 3,8 gram Na2EDTA.2H2O (BM=372) dengan aquades dalam labu ukur 1000 ml.
  • Ambil 25,00 mL larutan standar CaCl2 diatas, tuangkan ke dalam labu erlenmeyer 250 ml, tambah dengan 1,0 mL larutan bufer pH = 10 dan 2-3 tetes indikator EBT maka larutan akan berwarna merah.
  • Titrasi dengan larutan EDTA yang telah disiapkan sampai terjadi perubahan warna dari merah ke biru.
  • Percobaan diulang 3 kali
  • Hitung molaritas larutan EDTA
artikel 50
  • PENENTUAN TOTAL KESADAHAN DALAM AIR LAUT
Tujuan :
Menentukan konsentrasi total kesadahan dalam air laut secara kompleksometri dengan mentitrasi larutan air laut dengan larutan standar EDTA.
Cara kerja :
  • Ambil 2,00 mL sampel air laut, tuangkan kedalam labu erlenmeyer 250 mL, tambah dengan 25 mL aquades.
  • Tambah dengan 1,0 mL larutan bufer pH 10 dan 2-3 tetes indikator EBT maka larutan akan berwarna merah.
  • Titrasi dengan larutan standar EDTA sampai terjadi perubahan warna dari merah ke biru.
  • Percobaan diulang 3 kali
  • Hitung total kesadahan dalam air laut
artikel 51

Sabtu, 01 Februari 2014

PENENTUAN KADAR GARAM DENGAN METODE VOLHARD


TITRASI ARGENTOMETRI
JOBSHEEET 2
PENENTUAN KADAR GARAM DENGAN METODE VOLHARD

I.TUJUAN

1. mampu melaksanakan titrasi pengendapan metode volhard

2. menentukan kadar NaCl pada garam dapur dan pada air laut

II. TINJAUAN PUSTAKA

Metode Volhard

Metode Volhard menggunakan NH4SCN atau KSCN sebagai titrant, dan larutan Fe3+ sebagai indikator. Sampai dengan titik ekivalen harus terjadi reaksi antara titrant dan Ag, membentuk endapan putih.

Ag+(aq) + SCN-(aq) ↔ AgSCN(s)↓ (putih)

Sedikit kelebihan titrant kemudian bereaksi dengan indikator, membentuk ion kompleks yang sangat kuat warnanya (merah)

SCN-(aq) + Fe3+(aq) ↔ FeSCN2+(aq)

Yang larut dan mewarnai larutan yang semula tidak berwarna.

Karena titrantny SCN- dan reaksinya berlangsung dengan Ag+, maka dengan cara Volhard, titrasi langsung hanya dapat digunakan untuk penentuan Ag+ dan SCN- sedang untuk anion-anion lain harus ditempuh cara titrasi kembali: pada larutan X- ditambahkan Ag+ berlebih yang diketahui pasti jumlah seluruhnya, lalu dititrasi untuk menentukan kelebihan Ag+. Maka titrant selain bereaksi dengan Ag+ tersebut, mungkin bereaksi pula dengan endapan AgX:

Ag+(aq) (berlebih) + X- (aq) ↔ AgX(s)

Ag+(aq) (kelebihan) + SCN- (aq) (titrant) ↔ AgSCN(s)

SCN-(aq)  + AgX (s) ↔ X-(aq) + AgSCN(aq)

Bila hal ini terjadi, tentu saja terdapat kelebihan titrant yang bereaksi dan juga titik akhirnya melemah (warna berkurang).

Konsentrasi indikator dalam titrasi Volhard juga tidak boleh sembarang, karena titrant bereaksi dengan titrat maupun dengan indikator, sehingga kedua reaksi itu saling mempengaruhi.

c. Metode Fajans

Dalam titrasi Fajans digunakan indikator adsorpsi. Indikator adsorpsi ialah zat yang dapat diserap pada permukaan endapan (diadsorpsi) dan menyebabkan timbulnya warna. Penyerapan ini dapat diatur agar terjadi pada titik ekivalen, antara lain dengan memilih macam indikator yang dipakai dan pH.

Cara kerja indikator adsorpsi ialah sebagai berikut: indikator ini ialah asam lemah atau basa lemah organik yang dapat membentuk endapan dengan ion perak. Misalnya fluoresein yang digunakan dalam titrasi ion klorida. Dalam larutan, fluoresein akan mengion (untuk mudahnya ditulis HFl saja).

HFl(aq) ↔ H+(aq) +Fl-(aq)

Ion Fl- inilah yang diserap oleh endapan AgX dan menyebabkan endapan berwarna merah muda. Karena penyerapan terjadi pada permukaan, dalam titrasi ini diusahakan agar permukaan endapan itu seluas mungkin supaya perubahan warna yang tampak sejelas mungkin, maka endapan harus berukuran koloid. Penyerapan terjadi apabila endapan yang koloid itu bermuatan positif, dengan perkataan lain setelah sedikit kelebihan titrant (ion Ag+).

Suatu kesulitan dalam menggunakan indikator adsorpsi ialah, bahwa banyak diantara zat warna tersebut membuat endapan perak menjadi peka terhadap cahaya (fotosensifitasi) dan menyebabkan endapan terurai.

Titrasi menggunakan indikator adsorpsi biasanya cepat, akurat dan terpercaya. Sebaliknya penerapannya agak terbatas karena memerlukan endapan berbentuk koloid yang juga harus dengan cepat.

Dalam metode Volhard, menggunakan indikator Fe3+ dan NH4SCN atau KSCN sebagai larutan standar. Cara Volhard ini biasanya dipakai untuk menentukan kadar garam perak melalui titrasi langsung. Kadar garam klorida, garam bromida, dan garam iodida dengan titrasi kembali setelah ditambah larutan AgNO3 berlebih. Dalam titrasi cara ini, pH harus dalam keadaan rendah agar ion Fe+3 tidak mengalami hidrolisis. Dalam metode Volhard akan terbentuk endapan putih AgSCN yang dihasilkan dari reaksi antaraion perak dan ion sianida. Titik akhir titrasi akan tercapai, jika warna larutan berubah menjadi merah darah yang ditimbulkan karena adanya endapan Fe(SCN)3 (Ersanghono, 1996).


METODE



-Cara VOLHARD

              AgNO3


                  ↓

          NaCl+ind.K2CrO4+aquadest

Pembakuan KCNS

               KCNS

                   ↓

            AgNO3+ind.Ferialuin

Penetapan Sampel

                KCNS



             

                        ↓

Sample+HNO3 6N+AgNO3→panaskan,saring,cuci dg HNO3

Filtrat+ind.ferialuin→titrasi

                    

Titrasi argentometri dengan cara Volhard didasarkan atas pengendapan perak tiosianat dalam larutan asam nitrat dengan menggunakan ion besi (III) untuk mengetahui adanya ion tiosianat berlebih. Cara ini digunakan untuk titrasi langsung atau tidak langsung. Cara titrasi langsung digunakan untuk menentukan kadar perak dan cara titrasi tidak langsung digunakan untuk menentukan kadar klorida.

Cuplikan yang mengandung klorida direaksikan dengan perak nitrat berlebih, selanjutnya kelebihan perak nitrat dititrasi dengan larutan tiosianat standar yang diketahui konsentrasinya. Titik akhir titrasi dapat diketahui dengan terbentuknya warna merah dari kompleks besi (III) tiosianat.

Metode Volhard pertama kali diperkenalkan oleh Jacobus Volhard, ahli kimia dari Jerman pada tahun 1874. Dengan metode ini, larutan standar AgNO3 berlebih ditambahkan ke dalam larutan yang mengandung ion halogen (misalnya Cl-). Kelebihan ion Ag+ dalam suasana asam dititrasi dengan standar garam tiosianat (KSCN atau NH4SCN) menggunakan indikator larutan Fe3+. Sampai titik ekivalen, terjadi reaksi antara titran dan Ag+ membentuk endapan putih. Kelebihan titran menyebabkan reaksi dengan indikator membentuk senyawa kompleks tiosianato ferrat (III) yang berwarna merah. 

Dalam proses titrasi ini terjadi pengendapan bertingkat, yaitu pengendapan ion halida atau Cl- menjadi AgCl dan pengendapan garam AgSCN. Kedua garam tersebut dalam sistem larutan ada dalam kesetimbangan sehingga persamaan berikut dipenuhi.


Prinsip:
Pada metode ini, sejumlah volume larutan standar AgNO3 ditambahkan secara berlebih ke dalam larutan yang mengandung ion halida (X-). Sisa larutan standar AgNO3 yang tidak bereaksi dengan Cl- dititrasi dengan larutan standar tiosianat ( KSCN atau NH4SCN ) menggunakan indikator besi (III) (Fe3+). Reaksinya sebagai berikut ;

artikel 34
III. Alat
1. Pipet volume 25 mL 2. Pipet ukur 5 mL 3. Pipet tetes 4. Gelas arloji 5. Gelas piala 100 mL 6. Gelas piala 250 mL 7. Labu takar 100 mL 8. Corong 9. Statif dan klem 10. Spatula 11. Neraca analitik 12. Botol semprot 13. Botol gelap 14. Termometer 15. Pemanas listrik 11 IV. Bahan 1. AgNO3 2. NaCl 3. Larutan K2CrO4 0,1 M 4. Sampel garam dapur 5. Akuades 6. Kertas saring

  • STANDARDISASI LARUTAN AMONIUM TIOSIANAT (NH4SCN) DENGAN LARUTAN STANDAR AgNO3

Tujuan :
Menstandardisasi larutan AgNO3 dengan larutan standar NH4SCN menggunakan metode Volhard.

Cara kerja :

  • Siapkan larutan AgNO3 dengan cara melarutkan 9,00 gram AgNO3 kedalam 1000 mL.

  • Siapkan larutan NH4SCN 0,1 N dengan cara melarutkan 7,60 gram NH4SCN.

  • Ambil 25,00 mL larutan standar AgNO3 0,1000 N dengan pipet volume, tuangkan ke dalam erlenmeyer 250 mL, tambahkan 5 mL larutan Fe(NH4)2SO4 1 N sebagai indikator

  • Titrasi dengan larutan NH4SCN (yang sudah disiapkan) sampai pertama kali terbentuk warna merah kecoklatan.

  • Percobaan dilakukan 3 kali

  • Hitung normalitas (N) NH4SCN dengan cara :

artikel 35

  • PENENTUAN KADAR NaCl DALAM GARAM DAPUR

Tujuan :
Menetapkan kadar NaCl dalam garam dapur dengan cara menstandardisasi larutan garam dapur menggunakan Argentometri metode Volhard.

Cara Kerja :

  • Larutkan 1,00 gram sampel garam dapur (telah dikeringkan dalam oven selama 1 jam, suhu 110oC) dengan aquades di dalam labu ukur 250 mL.

  • Ambil 25,00 mL larutan tersebut dengan pipet volume tuangkan ke dalam labu erlenmeyer 250 ml.

  • Tambahkan 1 mL asam nitrat 4M dan 5 mL larutan Fe(NH4)SO4 1N.

  • Tambahkan larutan standar AgNO3 (dalam keadaan berlebih tetapi harus diketahui volumenya dengan pasti) ke dalam larutan yang ada dalam erlenmeyer.

  • Tambahkan 15 mL nitro benzena, kemudian labu erlenmeyer ditutup dan dikocok secara merata sehingga semua endapan AgCl dilapisi oleh nitro benzena.

  • Sisa AgNO3 yang bereaksi dengan ion klorida (Cl-) dititrasi dengan larutan standar NH4SCN menggunakan indikator larutan Fe(NH4)SO4 1 N sebanyak 5 mL. Titik akhir titrasi dicapai pada saat pertama kali terbentuk warna merah coklat.

  • Percobaan dilakukan 3 kali

  • Hitung kadar (%) NaCl dalam garam dapur dengan persamaan :

artikel 36

  • PENENTUAN KONSENTRASI KLORIDA DALAM AIR LAUT

Tujuan :
Penentuan konsentrasi klorida (Cl-) dalam air laut dengan titrasi Argentometri metode Volhard.

Cara kerja :

  • Ambil 5,00 mL sampel air laut dengan pipet volume, tuangkan kedalam erlenmeyer 250 ml.

  • Tambahkan 1 mL larutan HNO3 4M dan 5 mL larutan FeNH4(SO4)2 1N.

  • Tambahkan 30-40 larutan standar AgNO3 (berlebih tetapi harus diketahui volumenya dengan pasti) ke dalam larutan di atas.

  • Tambahkan 15 mL nitrobenzena, kemudian labu erlenmeyer ditutup dan dikocok secara merata sehingga semua endapan AgCl dilapisi oleh nitro- benzena.

  • Sisa AgNO3 yang tak bereaksi dengan ion klorida (Cl-) dititrasi dengan larutan standar NH4SCN menggunakan indikator Fe(NH4)SO4 1N sebanyak 5 mL. Titik akhir titrasi dicapai pada saat pertama kali terbentuk warna merah coklat.

  • Percobaan diulang 3 kali

  • Hitung molaritas (M) ion khlorida dalam air laut.

artikel 37